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A HIGH ORDER DISCONTINUOUS GALERKIN METHOD FOR 2D

INCOMPRESSIBLE FLOWS

JIAN-GUO LIU* ANI) CIII-\VAN(] SII[Tt

Abstract. In this pat)er we introduce a high order discontinuous Galerkin method for two dimensional

incoinpressible flow in vorticity streamfunction fornnllation. The inonlentuni equation is treated exl)licitly,

utilizing the efficiency of the discontimtous Galerkin method. The streanlflmction is obtained by a standard

Poiss(m solver using (:ontinu(lus finite elenmnts. There is a natural matching between these two finite element

spaces, since the normal component of the velocity field is continuous across element I)oundaries. This allows

for a correct upwinding ghting ill the discontinuous Galerkin framework, while still maintaining total energy

conservation with no numerical dissipation aim total enstrophy stability. The method is suitable for inviscid

or high Reynolds number flows. Optimal error estimates are proven and verified by immerical experinmnts.

Key words, incompressible flow, discontinuous Galerkin, high order accuracy

Subject classification. Apt)lied and Numerical Mathematics

1. Introduction and the Setup of the Scheme. We are interested ill solving the following 2D time

dependent incompressible Euler equations in vorticity streamfimctioll fornmlation:

_t+V'(u_) = 0

(1.1) A_,', = w', u = V±V',,

u.n = given on Oft,

i_",
where V ± = (-0 v, 0_). Notice that the boundary condition, plus tile fact that u. n = 57, recovers _, on

the boundary (ut) to a constant) ill a simple connected dolnain

(1.2) ¢', 10_?= _%.

We are also interested in solving the Navier-Stokes equations with high Reynolds numbers Re >> 1:

_'t + V. (u_) = 1A_

(1.3) AV, = _, u = V±v;,,

u = given on 0f_.

The boundary condition is now (1.2) plus the non-slip type boundary condition:

(1.4) Ov_ of_011 = Ub'r"

For simplicity, we only consider the no-flow, no-slip boundary conditions V)b = 0, Ub,_ = 0 and periodic

boundary conditions.
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We first emphasiz(_ that, for Euler equations (1.1) and high Reynolds numher (Re >> 1) Navier-Stokes

C_(luations (1.3), it is advantageous to treat both the convective terms and the viscous terms explicitly. Tile

methods discusse(t in this paper are stable under standard CFL conditions. Since tile nlolnentunl equation

(the first equation in (1.1) and (1.3)) is treated explicitly in the discontinuous Galerkin framework, there is

no global mass matrix to invert, unlike conventional finite element methods. This makes the inethod highly

eflicienl for parallel implementation, see for example [2]. As any finite element method, our approach has the

flexibility for conq)licated geometry and boundary conditions. The method is adapted from the Runge-Kutta

discontinuous Galerkin methods discussed by Cockburn et al. in a series of papers [7], [8], [9], [10], [11], [12],

[201and [6].
The main difficulties in solving incompressible flows are the incompressibility condition and boundary

conditions. The incompressibility condition is global and is thus solved by the standard Poisson solver for

the streamfunction ,g, using continuous finite elements. One advantage of our approach is ttlat there is no

matching conditions needed for the two finite element spaces for the vorticity a; and for the streamfunction

¢',. The incompressibility condition, represented by the streamfunction _/_, is exactly satisfied pointwise, and

is naturally matched with the convective terms in the momentum equation. The normal velocity u. n is

automatically continuous along any element boundary, allowing for correct upwinding for the convective

terms and still maintaining a total energy conservation and total enstrophy stability.

There is an easy proof for stability, both in tim total enstrophy and in the total energy, which does not

depend on the regularity of the exact solutions. For smooth solutions error estimates can be obtained.

()ui" method, as it stands, can only compute 2D flows. Similar approach for the primitive variable

formulation, suitable for 3D calculations, is under investigation.

We do not advocate our method for modest or low Reynolds number flows. In such regime viscosity

terms should be treated implicitly for efficiency. This is a much more challenging task in terms of space

matching characterized by the Babugka-Brezzi-Ladyzenskaja condition, projection type methods, and global

vorticity boundary conditions, see for example [3], [17], [25], [27], [18], [19], [24], etc.

For convection dominated flows, as we are interested in this paper, we inention the work of Bell et al.

[1] for second order Godunov type upwinding methods, see also Levy and Tadmor [22] and E and Shu [16].

This is still an active field for research.

We now describe the setup of the scheme. We start with a triangulation Th of the domain 12, consisting

of polygons of maximum size (diameter) h, and the following two approximation spaces

(1.5) 1_,k : {v:v ]/<e Pk(K), VK E Th}, BOkh : l'hk _ C0(l)),

where pk (K) is the set of all polynomials of degree at most k on the cell K.

For the Euler equations (1.1), the nmnerical method is defined as follows: find _Ch E t_' and Ch E I{'_:h,

such that

(1.6) <OtwhV)K--(WhUh'VV)K+ Z (uh'n_hv-)_ = 0, VVeVh _,
eEOK

(1.7) --(V_/_h • V_) ----(_n _2),

with the velocity field obtained from the stream function by

(1.8) uh -- V _- Ch-



Here (.) is tile usual integration over either the whole d()main Q or a subdomain denoted by a subscript.

Sanle thing for 1[-11 for the L 2 norm.

Notice that tile normal velocity Uh' n is continuous across any element boundary e, but both the solution

wh and the test function v are discontinuous there. We take the values of the test function from within the

element K, denoted by v-. The solution at the edge is taken as a single valued flux wl_, which can be either

a central or a upwind biased average. For example, the central flux is defined t_y

1 ,+

where '+ is the value of _'h on the edge e fl'om outside K the complete upwind flux is defined by
_4, h

{ _')7 ifuh.n_>0,
(1.10) _1, = , w,+ if u_, • n < (1.

and the Lax-Friedrichs upwind biased flux is defined by

' [u,,. n (_+ + -) - _:(_,,+- _,;)](1.11) Uh" nwa = '5 w'l,

where o is the maximmn of lUh - n I either locally (local Lax-Friedrichs) or globally (global Lax-Friedrichs).

We reinark that, for general boundary conditions (1.2), tile space II'_flh ill (1.5) should be modified to

take the boundary value into consideration. Moreover, additional physical vorticity boundary condition for

an)' inlet should be known.

Navier-Stokes equations (1.3) call be handled in a similar way, with the additional viscous terms treated

by the local discontinuous Gaterkin technique in [12], and with a local vorticity boundary condition in [13].

The detail is left to Sect. 3. Sect. 2 is devoted to the discussion of stability aim error estimates for the Euler

equations. Accuracy check and numerical examples are given in Sect. 4. Concluding remarks are given in

Sect. 5.

2. Stability and Error Estimates for the Euler Equations. For stability analysis, we take the

test function v = a;h in (1.6), obtaining

d 1 2
dt 2 ]IwhHK- ½(V'(W_Uh))K+ Z (uh'nw'£wh)¢ = O,

eEOK

where we have used the exact incompressibility condition satisfied by uh for the second term. Performing

an integration by parts for the second term, we obtain

d lllwhll_.+ Z (uh-n(_hW_--- 1 , -_(_h)"))_ = o.dt 2
eEOK

Now, using the fact, that

where

we obtain

_- = _ - ½[_l, (_-)" = _-_- _[_1,

= _ + [_]= _ _-,

dl 2 1
_"_a))_ + _ Z (Uh" n [a_h]('-&--_-- L'_h)}_ = O,dt_ll_hllK + _ <uh'n(_hh_-h---17-_

eEOK eEOK



Notice that the second term is of opposite sign for adjacent elements sharing a common edge e, hence it

becomes zero after summing over all the elements K (using the no-flow boundary condition on the physical

boundary). The third term is the nunml'ical dissipation: when wl_ is taken as the central flux (1.9), the third

wrm is exactly zero for the upwind flux (1.10), the third term becomes a positive quantity

1

(2.1) 4 Z ([uh-nl[wh]2)e
t, EOh"

which is the total enstrophy dissipation. The effect, of this is to control the size of the jump across the element

interface and essentially "gluing" the solution there. Other ut)wind biased fluxes such as the Lax-Friedrichs

flux (1.11) would produce a similar positive term as the total enstrophy dissipation. For slnooth flows these

jumps are of the order O(h _') within the truncation error of the scheme. We thus obtain the the following

enstrophy inequality

el

(2.2) d-711_hll2 _<0,

which becomes an equality if the central flux (1.9) is used.

The stability for the velocity field is now straightforward: we take _ -- _h in (1.7) to obtain:

(v,0h- V'_:'h)------ (_'h '_':'h)_<ll_"',,llll_hll< CHV_)hHHra3h[[

by the Poincare inequality, which implies

(2.3) [JUhll = [JV0hl[ __CIl_hll.

Indeed, we can obtain a total energy conservation through the following arguments. Taking v = _/,'h in (1.6),

we obtain

eEOh"

Now the second term is zero since uh - Vg)h = 0. The third term vanishes after summing over all elements

since _"h is continuous. Finally, noticing that

--(0t_heh) = _ []V0hll 2 d 1= d-t_2 Iluhll_'

we obtain the conservation of energy

d
(2.4) dt llu_ll = 0

even for a upwind flux. Thus there is no numerical dissipation for the energy.

"_ now turn to the error estimates. For these we would need to assume that the solution is regular.

Conceptionally, sinee this is a finite element method, the exact solution of the PDE satisfies the scheme

exactly. As usual, we define the two projection operators: P is the standard L 2 projection into the space

i_k; and II is the standard projection into _Iokh '

(v(_,- n_,). v_) = 0, v_ _ _%_,h-

Denote the error functions by

e = W--Wh, '_ = _;')--¢h



andtheirprojectionsby

Ch -- PG = P_--_h_

%re first obtain a control of _/, in terms of c:

(Va. V_) = -{c_),

This leads to a bound for tile velocity fiehl

llV_,,ll _<Clkll.

(2.5)

Ilu - u,,ll - IIV(W- _,">h)[I5 IIV(*/,- m_;)ll+ IIV(11,/,- *,',,,)11

< IIV(,/,- m,:,)ll+ Olkll.

Since both the mmmrical solution and the exact solution satisfy (1.6),

(2.6) (O,eV)K--((_'U--C0/,Uh)'VV)K+ _ ((u.n_--u,,.n&-_h)v-)_, = 0, VveI)_"
eEOK

Take v = oh. The second term becomes

(2.7) ((_u - _huh)' Veh)_, = (_(u - uh)- Veh)_,- + (e uh • Ve)l,- - (cut, -V(_' -/'_'))K.

Noticing that u - uh is exactly divergence free we may perform integration by parts to the first term on the

right side of (2.7) to obtain

(_(,, - u,,). w,,)_,_= -(_,,(u - u,,). w)K + _ ((u - u,,). ,-,_;)_.
eEOK

The second term on the right side of (2.7) is a complete derivative, hence can be integrated to give a pure

boundary, term

1
(_,.,,,.w),,- = _ _ (u,,. n(_-)2),.

eEOK

Plugging all these into (2.6) with v = sh, and collecting boundary terms, we obtain

(area Sh)A" + {Sh(U -- Uh)" Vco)A + {Cub- V(co -- P_o))A" + Z I_ = 0
eEOK

where the boundary terms

I. = -((u - uh)-ncosh-), 1- _<(,.,,,.,, (e-)":,_+ ((,.,•n_,- u,,.n_)e;)_
' (c)2)),.= (uA" n (gc_- -

-- <uh -n (Fs- - _1(c-)2)> e - {u h - llt _" (_ -- (PD3)-)) e .

which gives

from the scheme (1.7) and the fact that the exact solution also satisfies (1.7). Now, taking _2=/ij,, we ot)tain

(V_h. V6h) = (V_.V_,) = -(c_j,),



Using the stability analysis in (2.2), we are left. with

(2.s)

d 1 _ .)

K

Assuming for the monmnt

--(eh(U -- U_,)' V_)_," -- (eUh" V(.; --/"_))h

+ Z <u,,.n_'(,,- (P_)-)>_.}.
eEOK"

(2.9) Ilu,, -<c,

we can first estimate the boundary term

h" eEOK K eE,OK

C
_<Ikll-' + X _ _ II[Pw]ll_.

K eEOK

Using the above inequality together with (2.5) and (2.8), we now obtain

_llchll 2 < c II_hll_ + IIV(_"- nv,)ll'-' + I1_'- P_IIS, + _ _ _ II[P_']ll_ •
K eEOK

Here we understand the norms as a summation of the same norm on each A'. Using the standard interpolation

theory [5], we obtain

d
d-711chll2 < c Ikhll 2 + Ch 2_"

which yMds

IIchll _<C h_.

Together with (2.5), we have

(2.10) Ilu - uhlt + Ilu -a&ll < Ch k-

Using an inverse inequality, we have

tlu - uhlloo _<Ct? -_

this justifies the a priori assumption (2.9).

The estimate (2.9) is optimal in terms of the space W t" which is important since the main cost for theO,h _

scheme is in the Poisson solver in Wk0,h- The vorticity estimate in (2.9) is however suboptimal with respect

. Wk+_ instead for the streamfunction and the upwind flux (1.10), then a moreto the space l_k If we use .,O,h

detailed analysis will produce an order O(h *+ ½) for the error in w, see [21] and [12] for details. However, we

do not recommend this choice in practice, as the increase of half order accuracy is obtained with the price

of one degree higher polynomials in the most expensive part of the algorithm, namely the Poisson solver.

In our numerical experiments in Sect. 5, we observe that close to (k + 1)-th order of accuracy is generally

achieved when k-th degree polynomials are used in both the discontinuous space for w and the continuous

space for V), both for uniform and for non-uniform meshes.



3. The Scheme for the Navier-Stokes Equations. For the Navier-Stokes equations (1.3), there are

two additional ingredients needing our attention:

1. The viscous terms cannot t)e directly iml)lenmnted in the (tiscontinuous space 1 )_'. Instead, the stress

tensor is first ot)tained locally using the saine discontinuous Galerkin framework.

2. Vorticity I)oundary values are not known physically. We obtain vorticity l)oundary conditions locally

from the streanffunction using the kinematic relation in (1.3).

We use the same finite element st)aces 1_' and l't'(_it, defined in (1.5) fi)r the vorticity and st reanffunetion,

respectively. Denote, bv V k the subst)ace of l)_' with zero vahle at the botmdarv nodes. Let II_' be the• ,, 0,h'

finite element spaces extended from ll'(_it _with general non-zero values at the t)oundary nodes. The nmnerical

method now I)ecoines:

(3.1) (O, w,,,v)j,- - <whut, -Vt,}t,- + _ (uh .n_,v-),. = --(ah'Vv)K + _ (_ -n,,-),. WE1 q", O,h

eEDt< eEOK

Notice that the test function is now in i "k (see [15]), and the stress tensor ah Z (l_') _ is obtained from
0.h'

the vorticity aJh by the same discontinuous Galerkin framework:

j, ')

(3.2) Re(O'hV)_- = -(_',,V.v)K + _ (_,v- .n)_, Vv • (I),')-.
eEOK

The fluxes ahh and _ can be chosen as central averages

(3.3) ah = __(ah-+a+), w,, = _(w;+_,,)

or better still, as alternate one-sided fluxes, namely, at. each edge e with an arl)itrarily fixed orientation, one

of _ and _ is taken as the left. value an(t the other taken as the right value. It can be verified that, for

k = 0 and a rectangular triangulation, the central fluxes (3.3) produce a wide stencil central approximation

to the second derivatives (wi-2, a3i and a_'i+2 are used for approximating Wxx), while the alternate one-side(l

fluxes produce a compact stencil central approximation (wi-1, aJi an(t -Ji+x are used for at)proximating w_x).

Also, numerical and theoretical evidence shows that. the alternate one-sided fluxes produce more accurate

results [12]. In this paper we use only the alternate one-sided fluxes for the viscous terms.

We advocate the same steps as in [15] for a finite element method. In the time stepping, we first compute

the vorticity at the interior nodes, and we will use these values to compute a stream function and then we use

the stream function to deternfine the vortieity at the boundary nodes. This time-stepping is very efficient.

and we do not need any iteration between the boundary vorticity vahle and interior values, thus eliminating

some traditional difficulties associated with the vorticity formulation. This time-stepping was first developed

for finite-differences in [13, 14].

Since (3.1) is treated explicitly, The value of _z"+1 is computed via two steps. First, we compute

(a/'+_ v)t,- for all t, • I,'k from the explicitly time stepping of (3.1). The value of a_,_'+_ at the interior
h O,h

.n+l
element can now be directly computed from this term. However, the value of "Jh at the boundary element

shall be determined after we computed the stream function as we explain below.

These values, {w_+1 v)1,- for all v • Vs'0.h, is sufficient to be used to compute the stream function from

(_.,, .q-t- 1 _'_'Ot h ,(3.4) -(V'(_ '+' • V_) = h _), V_2•

with the velocity field obtained from the stream function by

(3.5) . ,+1 = V± ,_,,,+1
Uh V'h



We now describe how to get tile vorticity at the boundary cells. Since _/,_,+l is known, we can compute

, ,,,,tl+ 1-(V% V_} ' "+l" = k_'h 9_),

h)r the test function p at the boundary nodes. V_'e can then use it to compute the value of vorticity at the

boundary elements.

For problenls with perio(lic boundary conditions, the fornmlation above admits the following stability

results:

d .)

(3.6) _711_,,11-+ 211_hll< 0,

which in turn implies stat)ility h)r tile velocity field (2.3). The proof is similar to tile Euler case, see [12]

for the details. With the vorticity boundary cundition mentioned above, we are unal)le to ot)tain a stability

estimate. However, this type of vorticity t)oundary treatment for conventional finite difference and finite

el(_ments is stable, see [14] and [15].

4. Accuracy Check and Numerical Examples. We implement our method on triangulations based

on rectangles. When a P_' result is referred to it is obtained with pS. elements for the vorticity w, and Q*"

ch,mt,nts for tile streamfunction _'_. Strictly speaking Q_" elements should also be used for the vorticity

for the exact energy conservation (2.4) to hold, however to save cost we use pS. elements for the vorticity

,_, instead. Energy stability (2.3) anti enstrophy stability (2.2) still hold in this case. We have used both

the upwind flux (1.10) and tile (global) Lax-Friedrichs flux (1.11) for the calculations, however we will only

show the results obtained with the Lax-Friedrichs flux to save space. Tile time discretization is by the ttlird

order positive Runge-Kutta methods in [26].

Example 1: This example is used to check the accuracy of our sct,emes, both for tile Euler equations (1.1)

and for the Navier-Stokes equations (1.3) with Re = 100, for both the periodic and the Dirichlet boundary

conditions, and with both a uniform mesh and a non-uniform mesh. The non-uniform mesh is obtained by

alternating between 0.9Ax and 1.1 Ax for the mesh sizes in the x direction, siinilarly for the mestl sizes in

the y direction. The initial condition is taken as

(4.1) _(x, y, 0) = -2 sin(x) sin(y),

which was used in [4]. The exact solution for this case is known:

(4.2) _o(x,y,t) -2sin(x) sin(y)e- _---- /i'e.

V_'o use the domain [0, 27r] x [0, 27r] for the periodic case and [0, rr] x [0, 7r] fox" the Dirichlet case and compute

tile errors at t = 2 for tile periodic case and at t = 1 for the Dirichlet case. _,_,_ list in Table 4.1 (uniform

mesh) and Table 4.2 (non-uniform mesh) the L1 and L_ errors, at t = 2, measured at the center of the cells,

for the periodic boundary conditions. Table 4.3 (uniform mesh) and Table 4.4 (non-uniform mesh) contain

the results with the Dirichlet boundary conditions at t = 1. We remark that, because of the difference in

the sizes of the domains of the periodic and Dirichlet cases, the errors with the same number of cells are of

different values, but the orders of accuracy are similar. We have also computed the errors of the relevant

derivatives at tile centers of the cells, wtfich help in giving us truly Lo¢ errors throughout the domain. We

will not show them to save space.



TABLE '1.1

Accuracy test, uniform meshes, periodic boundary conditions.

lllesh

162

322

642

1282

162

322

642

1282

162

322

642

1282

Euler

L l error order ] L _' error order

P1

Navier-Stokes with Re = 100

L _ error order L _' error order

7.77E-03 - 1.80E-02 - 7.65E-03 1.82E-02

1.01E-03 2.94 2.46E-03 2.87 1.03E-03 2.89 2.55E-03 2.83

1.28E-04 2.99 3.14E-04 2.97 1.36E-04 2.92 3.44E-04 2.89

1.60E-05 3.00 3.94E-05 2.99 1.80E-05 2.92 4.63E-05 2.89

P2

6.26E-04 - 1.58E-03 -- 2.06E-04 5.85E-04

5.52E-05 3.50 2.75E-04 2.52 1.37E-05 3.90 3.24E-05 4.17

4.82E-06 3.52 3.81E-05 2.85 2.40E-06 2.51 4.10E-06 2.98

4.04E-07 3.58 4.96E-06 2.94 4.05E-07 2.57 6.44E-07 2.67

P3

9.74E-05 2.31E-04 9.68E-05 2.33E-04

6.81E-06 3.84 1.67E-05 3.79 6.22E-06 3.96 1.50E-05 3.96

4.36E-07 3.96 1.05E-06 3.99 3.82E-07 4.02 9.25E-07 4.02

2.71E-08 4.01 6.59E-08 3.99 2.33E-08 4.04 5.70E-08 4.02

TABLE 4.2

Accuracy test, non-uniform meshes, periodic boundary conditions.

mesh

162

322

642

1282

16 z

322

642

1282

162

322

642

1282

Euler

L 1 error order L '_ error

8.49E-03

1.44E-03

2.81E-04

5.90E-05

7.88E-04

7.82E-05

7.66E-06

7.43E-07

1.03E-04

7.18E-06

4.60E-07

2.86E-08

Navier-Stokes with Re = 100

L 1 error order L _ error [ order
I

I order

P1

2.85E-02 -- 7.77E-03 2.80E-02

2.56 5.56E-03 2.36 1.16E-03 2.75 5.45E-03 2.36

2.36 1.13E-03 2.29 2.17E-04 2.42 1.03E-03 2.40

2.25 2.59E-04 2.13 4.13E-05 2.40 1.94E-04 2.41

P2

2.77E-03 --- 3.37E-04 1.18E-03

3.33 4.11E-04 2.75 1.78E-05 4.24 6.40E-05 4.21

3.35 5.15E-05 3.00 2.63E-06 2.76 6.97E-06 3.20

3.37 6.11E-06 3.07 4.34E-07 2.60 1.00E-06 2.80

P3

3.26E-04 -- 1.01E-04 3.24E-04

3.84 2.60E-05 3.65 6.52E-06 3.96 2.14E-05 3.92

3.96 1.77E-06 3.88 4.01E-07 4.02 1.28E-06 4.06

4.01 1.09E-07 4.02 2.44E-08 4.03 7.70E-08 4.06



TABLE 4.3

Accuracy test, uniform meshes, Dirichlet boundary conditions.

llleS}l

162

322

642

1282

162

32'-'

642

128"

162

322

642

1282

Euler Navier-Stokes with Re = 100

L 1 error order L 'x error L l error order L _ error order

5.92E-04 -- 1.23E-03

8.19E-05 2.85 1.92E-04

1.06E-05 2.94 5.35E-05

1.35E-06 2.98 1.42E-05

4.76E-05 2.57E-04

4.28E-06 3.47 3.57E-05

3.74E-07 3.52 4.65E-06

3.17E-08 3.56 5.92E-07

6.80E-06 -- 1.58E-05

4.22E-07 4.01 1.06E-06

2.66E-08 3.99 6.90E-08

1.66E-09 4.0{} 4.25E-09

order

P1

5.75E-04

2.68 7.52E-05

1.84 9.63E-06

1.92 1.25E-06

P2

1.51E-05

2.85 2.49E-06

2.94 4.11E-07

2.97 6.16E-08

P3

-- 6.34E-06

3.90 3.90E-07

3.94 2.38E-08

4.02 1.46E-09

2.94

2.96

2.94

1.32E-03

1.78E-04 2.89

3.76E-05 2.25

8.06E-06 2.22

4.05E-05

6.09E-06 2.73

9.42E-07 2.69

1.34E-07 2.81

1.53E-05

9.45E-07 4.02

5.81E-08 4.02

3.59E-09 4.{}2

2.60

2.60

2.74

4.02

4.04

4.03

TABLE 4.4

Accuracy test, non-uniform meshes, Dirichlet boundary conditions.

lllesh

162

322

642

1282

162

322

642

128 ?

162

32 _

642

1282

L 1 error

1.12E-03

2.44E-04

5.61E-05

1.36E-05

7.54E-05

8.15E-06

8.46E-07

8.31E-08

7.17E-06

4.46E-07

2.80E-08

1.75E-09

Euler

order [ L _ error
I

4.35E-03

2.20 9.79E-04

2.12 2.39E-04

2.04 6.29E-05

- 3.31E-04

3.21 4.33E-05

3.27 5.35E-06

3.35 6.56E-07

-- 2.49E-05

4.01 1.66E-06

3.99 1.04E-07

4.00 6.89E-09

I order

P1

9.93E-04

2.15 1.95E-04 2.35

2.04 3.90E-05 2.33

1.92 7.76E-06 2.33

P2

1.98E-05

2.93 2.61E-06 2.93

3.02 4.35E-07 2.59

3.03 6.52E-08 2.74

P3

-- 6.65E-06

3.91 4.09E-07 4.02

3.99 2.50E-08 4.03

3.92 1.53E-09 4.02

Navier-Stokes with Re = 100

L 1 error I order I L °_ error order

4.25E-03

8.74E-04 2.28

1.75E-04 2.32

3.54E-05 2.31

6.63E-05 -

7.03E-06 3.24

1.02E-06 2.79

1.49E-07 2.78

2.18E-05 -_

1.31E-06 4.06

7.86E-08 4.06

4.77E-09 4.04
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We can clearly see from these tables that close to (k + 1)-th order of accuracy is generally achieved when

k-th degree polynonfials are used in both tile discontinuous space for +, and for the Poisson solver, both for

the uniform and for the non-uniforn_ meshes.

Example 2: The double shear layer problem taken from [1]. We solve the Euler equation (1.1) in the

domain [0, 2zr] x [0, 2,-r] with a periodic boundary condition and an initial condition:

(4.3)
1_._cd:'((:q - 7r/2)/p) ._ <cos(z) - .
I sech2((37r/2_ !])/p) y >cos(x) +

where we take p = 7r/15 and 5 = 0.05.

The solution quickly develops into roll-ups with smaller and smaller scales, so on any fixed grid the flfll

resolution is lost eventually. We use fixed uniform meshes of 64 x 64 and 128 x 128 rectangles and perforin

the calculation up to t = 8. We plot the time history of total energy (square of the L 2 norm of velocity u)

and total enstrophy (square of the L 2 norm of vortieity w) in Fig. 4.1, as well as contours of the vorticity _ at

t = 6 in Fig. 4.2 and at t = 8 in Fig. 4.3 to show the resolution. We can see fi'om Fig. 4.1 that the nmnerical

dissipation decreases roughly in the order of p1 642, p, 128", p2 64 _, p3 642, p2 128'-', and p3 1282. The

higher order methods have better resolutions and in general the resolution is quite good judging from the

contours. \_,_ remark that when the numerical viscosity becomes to() small with higher order methods, since

the schemes are linear, numerical oscillations are unavoidal)le when resolution to sharp fronts is lost, leading

to instability. This is (:ommon for all linear schemes. However, the discontinuous Galerkin method we use

here is able to get stal)le solutions for much sharper fronts with the same mesh than central type finite

difference or finite element methods. More extensive nunmrical resolution study for this example can be

found in [23]. For a comparison with nonlinear ENO schemes, we refer to [16].

.28

E'_.27

Z4 26

34.25

34.24

34.23

34.22

34.21

34.2

34.19

34.18

34.17

34.16

34.15

34.14

34.13

34-12 0

Energy as a function of time

, , I .... i , , , _ l i i L , l
2 4 6 8

t

82
8O

78

76

74

72

70

68

66

64

62

60 I i

enstropy as a function of time

i i

\ \.\ _-.

\ \

\ \
\ \

\\\\

.... p1,120

....... _,_.'

I , , , t I , i , , I , , , l
2 4 6 8

t

FIG. 4.1. The time history of energy (square of the L2 norm of the velocity u) and total enstrophy (square of the L 2 norm

of vortieity w). p1 with 642 mesh in solid line, pl with 128 '_ mesh in dashed line, p'2 with 642 mesh in dash-dot line, p2 with

1282 mesh in dotted line, p3 with 642 mesh in long dashed line, and p3 with 128 :_ mesh in dash-dot-dot line.

Example 3: The vortex patch problem. We solve the Euler equation (1.1) in [0,27r] x [0,27r] with the

ll



fi)llowing initial condition:

(4.4)
_ _ _ x<y_ <

w(.r,y,0) = 1,. _, _<x_< :'_3' '_ <Y-< Za¢:

0, otherwise

and periodic boundary conditions. The contour plots of vorticity w, with 30 equally spaced contour lines

between _,' = -1.1 and w = 1.1, are given in Fig. 4.4 for t = 5 and in Fig. 4.5 for t = 10. We can see that

the scheme gives stable results for all runs, and higher order schemes give better resolutions for vorticity.

5. Concluding Remarks. We have develot)ed a high order discontinuous Galerkin method for the two

dimensional incompressible Euler and Navier-Stokes equations in the vorticity streamfimction fornmlation,

tout)led with a standard continuous finite element solution of the Poisson equation for the streamfimction.

A natural matching between the two finite element spaces allows us to obtain total energy conservation and

total enstrot)hy stability. Numerical examples are shown to demonstrate the accuracy and resolution of the

m(,thods.
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FIG. :1.2. Contour of vorticity w at t ---- 6. 30 equally spaced contour lines between _ -- -4.9 and _ ---- 4.9. Left: results

with 64 e mesh; Right: results with 1282 mesh. 7_p: f)t ; middle: p2, bottom: p3.
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FIG. 4.3. Contour of vorticity w at t = 8. 30 equally spaced contour lines between u,, = -4.9 and a: = 4.9. Left: results

with 642 mesh; Right: results with 1282 mesh. Top: p1; middle: p'2, bottom: p3.
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FIG. 4.4. Contour of vorticity _ at t = 5. 30 equally spaced contour lines between _ = -1.1 and _z -- l.l. Left: results
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